
 

Feinstein-Burr: The Bill That Bans Your Browser 

Julian Sanchez 

April 29, 2016 

Last week, I criticized the confused rhetorical framework that the Feinstein-Burr encryption 

backdoor proposal tries to impose on the ongoing Crypto Wars 2.0 debate. In this post, I want to 

try to explain why technical experts have so overwhelmingly and vehemently condemned the 

substance of the proposal. 

The first thing to note is how extraordinarily sweeping the bill is in scope. Its mandate applies to: 

device manufacturers, software manufacturers, electronic communication services, remote 

communication services, providers of wire or electronic communication services, providers of 

remote communication services, or any person who provides a product or method to 

facilitate a communication or to process or store data. [emphasis added] 

Any of these “covered entities,” upon receipt of a court order, must be able to either provide the 

government with the unencrypted “plaintext” of any data encrypted by their product or service, 

or provide “technical assistance” sufficient to allow the government to retrieve that plaintext or 

otherwise accomplish the purpose of the court order. Penalties aren’t specified, leaving judges 

with the implicit discretion to slap non-compliant providers and developers with contempt of 

court. Moreover, “distributors of software licenses” — app stores and other software repositories 

— are obligated to ensure that all the software they host is capable of complying with such 

orders. 

Some types of encrypted communications services either already comply or could comply in 

some reasonably obvious way with these requirements. Others, not so much. Because of the 

incredible breadth of the proposal, it’s not possible to detail in a blog post all the varied 

challenges such a mandate would present to diverse types of software. But let’s begin by 

considering one type of software everyone reading this post uses daily: Your Web browser. To 

the best of my knowledge, every modern Web browser is non-compliant with Feinstein-Burr, 

and would have to be pulled from every app store in US jurisdiction if the bill were to become 

law. Let’s explore why. 

While ordinary users probably don’t think of their Web browser as a piece of encryption 

software, odds are you rely on your browser to engage in encrypted communications nearly 

every day. Whenever you connect to a Web-based e-mail provider like Gmail, or log into an 

online banking account, or provide your credit card information to an e-commerce site, you’re 

opening a securely encrypted HTTPS session using a global standard protocol known 

as Transport Layer Security or TLS (often still referred to as SSL or Secure Sockets Layer, an 

https://www.justsecurity.org/30669/feinstein-burr-encryption-the-rule-law/
http://www.burr.senate.gov/press/releases/intelligence-committee-leaders-release-discussion-draft-of-encryption-legislation-
http://www.burr.senate.gov/press/releases/intelligence-committee-leaders-release-discussion-draft-of-encryption-legislation-
http://www.motherjones.com/politics/2016/04/tech-and-privacy-experts-go-nuclear-newly-leaked-encryption-bill
http://www.wired.com/2016/04/senates-draft-encryption-bill-privacy-nightmare/
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Transport_Layer_Security


earlier version of the protocol). Even sites that don’t traffic in obviously sensitive data are 

increasingly adopting HTTPS as a default (for example, your visit to this post if you’re reading it 

at Just Security is HTTPS by default). Any time you see a little padlock icon next to the address 

bar on your browser, you are using HTTPS encryption. 

This is absolutely essential for two big reasons. First, people routinely connect to the Web via 

WiFi access points they don’t control — such as a hotel, coffee shop, or airport. Without 

encryption, an unscrupulous employee of one of these businesses — or a hacker, or anyone who 

sets up a phony “LocalCafeWiFi” hotspot to snare the unwary — could easily vacuum up 

people’s sensitive data. Second, the Internet is a packet-switchednetwork that operates very 

differently from traditional centralized phone networks. That means even when you’re 

connecting to the Internet from a trusted access point, like your home or office, your data is 

passed like a relay race baton across perhaps dozens of different networks you don’t control 

between your computer and the destination. (You can use a program called Traceroute to see all 

the intermediary points your data passes through on the way from your computer to any given 

website.) Without encryption, you’d have to trust this plethora of unknown intermediaries, 

foreign and domestic, not only to refrain from snarfing up your sensitive data, but to secure their 

systems against hackers looking to snarf up your data. Which, needless to say, is impossible: 

You’d be a fool to undertake a commercial transaction or send a private message under those 

circumstances. So it’s no exaggeration to say that the Internet as we now know it, with the 

spectacular variety of services it supports, simply wouldn’t be possible without the security 

provided by cryptographic protocols like TLS. 

So how does TLS work? If you’re a masochist, you can wade through the the technical 

guidelines published by the National Institute of Standards & Technology, but here’s a somewhat 

oversimplified version. Bear with me — it’s necessary to wade into the weeds a bit here to 

understand exactly why a Feinstein-Burr style mandate is so untenable. 

When you open a secure HTTPS session with a Web server — which may, of course, be abroad 

and so beyond the jurisdiction of US courts — your Web browser authenticates the identity of 

the server, agrees on a specific set of cryptographic algorithms supported by both your browser 

and the server, and then engages in a “handshake” process to negotiate a shared set of 

cryptographic keys for the session. One of the most common handshake methods is a bit of 

mathematical sorcery called Diffie-Hellman key exchange. This allows your computer and the 

Web server to agree on a shared secret that even an eavesdropper monitoring the entire 

handshake process would be unable to determine, which is used to derive the ephemeral 

cryptographic session keys that encrypt the subsequent communications between the 

machines. (Click the link above for the gory mathematical details, or see the image on the right 

for a liberal-arts-major-friendly allegorical version.) 

A few features of this process are worth teasing out. One is that properly configured 

implementations of TLS (depending on the exact algorithms agreed upon) give you a property 

known as “forward secrecy”: Because a unique, unpredictable, and ephemeral key is generated 

for each session, old communications remain securely encrypted even if a server’s long-term 

cryptographic keys — which remain the same over longer periods for purposes like verifying the 

server’s identity — are later compromised. In economic terms, that means the “return on 

investment” for an attacker who manages to worm their way into a server is limited: They might 

https://en.wikipedia.org/wiki/Traceroute
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Forward_secrecy


be able to read the communications that occur while they remain in the system undiscovered, but 

they don’t then get to retroactively unlock any historical communications they’ve previously 

vacuumed up. This both mitigates the the downside consequences of a successful attack and, 

perhaps more critically, makes it less rational for sophisticated attackers to expend extraordinary 

resources on compromising any given set of keys. A recent paper by a who’s-who of security 

experts, incidentally, pointed to forward secrecy as a feature that is both increasingly important 

to make standard in an escalating threat environment and particularly difficult to square with a 

government backdoor mandate. 

Some of the reasons for that become clear when we consider another rather obvious feature of 

how TLS functions: The developer of your browser has nothing to do with the process after the 

software is released. When I log into an e-commerce site using Firefox, Mozilla plays no role in 

the transaction. The seed numbers used to negotiate session keys for each TLS-encrypted 

communication are generated randomly on my computer, and the traffic between my computer 

and the server isn’t routed through any network or system controlled by Mozilla. A user 

anywhere in the world with a copy of Firefox installed can use it to make secure connections 

without ever having anything further to do with Mozilla. And TLS isn’t designed this way 

because of Edward Snowden or as some insidious effort to make it impossible to execute search 

warrants. It’s designed that way because a lot of very bright people determined it was the best 

way to do secure communications between enormous numbers of arbitrary endpoints on a global 

packet-switched network. 

There are any number of ways a government agency might be able to get the contents of a 

targeted user’s TLS-encrypted HTTPS communications. The easiest is simply to demand them 

from the server side — but that will only work in cases where the server is subject to US 

jurisdiction (or that of an ally willing to pass on the data), and the server may not itself log 

everything the government wants. Advanced intelligence agencies may be able to mount various 

types of “active” attacks that involve interposing themselves into the communication in realtime, 

but developers are constantly striving to make this more difficult, to prevent criminal hackers 

from attempting the same trick — and while NSA may be able to manage this sort of thing, 

they’re understandably reluctant to share their methods with local law enforcement agencies. In 

any event, those “active” attacks are no help if you’re trying to decrypt intercepted HTTPS 

traffic after the fact. 

Now an obvious, if inconvenient, question arises. Suppose a law enforcement agency comes to 

Mozilla or Apple or Google and says: We intercepted a bunch of traffic from a suspect who uses 

your browser, but it turns out a lot of it is encrypted, and we want you to decipher it for us. What 

happens? Well, as ought to be clear from the description above, they simply can’t — nor can any 

other modern browser developer. They’re not party to the communications, and they don’t have 

the cryptographic keys the browser generated for any session. Which means that under Feinstein-

Burr, no modern Web browsers can be hosted by an app store (or other distributor of software 

licenses), at least in their current forms. 

How, then, should developers redesign all these Web browsers to comply with the law? The text 

of Feinstein-Burr doesn’t say: Nerd harder, clever nerds! Love will find a way! You’ll 

figure something out! But as soon as you start thinking about classes of possible “solutions,” it 

becomes clear there are pretty huge problems with all of them. 

http://dspace.mit.edu/handle/1721.1/97690


One approach would be to make the key material generated by the browser not-so-random: Have 

the session keys generated by a process that looks random, but is predictable given some piece of 

secret information known to the developer. The problem with this ought to be obvious: The 

developer now has to safeguard what is effectively a skeleton key to every “secure” Internet 

communication carried out via their software. Because the value of such a master key would be 

truly staggering — effectively the sum of the value of all the interceptable information 

transmitted via that software — every criminal organization and intelligence agency on the 

planet is going to have an enormous incentive to whatever resources are needed to either steal or 

independently derive that information. 

Another approach might be to redesign the browser so that the developer (or some other 

designated entity) becomes an effective intermediary to every HTTPS session, keeping a 

repository of billions of keys just in case law enforcement comes knocking. This would, needless 

to say, be massively inefficient and cumbersome: The unique flexibility and resilience of the 

Internet comes precisely from the fact that it doesn’t depend on these sorts of centralized 

bottlenecks, which means my Chrome browser doesn’t suddenly become useless if Google’s 

servers go down, or become unreachable from my location for any reason. I don’t have to go 

through Mountain View, California, just to open a secure connection between my home in DC 

and my bank in Georgia. And, of course, it has the same problem as the previous approach: It 

creates a single point of catastrophic failure. An attacker who breaches the master key repository 

— or is able to successfully impersonate the repository — has hit the ultimate jackpot, and will 

invest whatever resources are necessary to do so. 

Yet another option — perhaps the simplest — is to have the browser encrypt each session key 

with the same public key, either the developer’s or that of some government agency, and 

transmit it along with the communication. Then a law enforcement agency wanting to decrypt an 

intercepted HTTPS session goes to the developer or government entity whose public key was 

used to encrypt the session key, asks them to use their corresponding private key to unlock the 

session key, and uses that to decipher the actual communication. You can already guess the 

problem with this, right? That private key becomes a skeleton key that has to be kept secure 

against attackers, sacrificing the security advantages of forward secrecy. It has the additional 

problem of requiring a lot of additional anti-circumvention bells and whistles to prevent the user 

from trivially re-securing their session, since anyone who doesn’t want the new eavesdropping 

“feature” just has to install a plugin or some third-party application that catches the packet with 

the encrypted session key before it leaves the user’s machine. 

There’s a further wrinkle: All complex software has vulnerabilities — like the Heartbleed bug in 

the widely-used OpenSSL library, which made headlines last year as exposing millions of users 

to the risk of having their secure communications compromised and spurred a frantic global 

patching effort. Modern software is never really finished: New vulnerabilities are routinely 

discovered, need to be patched, updates must be widely disseminated and installed, and then the 

cycle starts all over again. That’s hard enough as it is — an exercise in dancing madly on the lip 

of a volcano, as John Oliver memorably put it. Now there’s the added problem of ensuring that a 

new update to fix an unintentionalvulnerability doesn’t simultaneously either break 

the intentional vulnerability introduced to provide law enforcement access, or interact 

unpredictably with any of the myriad approaches to guaranteeing government access in a way 

that creates a new vulnerability. People who don’t actually have to do this for a living are 

https://www.youtube.com/watch?v=zsjZ2r9Ygzw


awfully confident this must be possible if the nerds only nerd hard enough. The actual nerds 

mostly seem to agree that it isn’t. 

So far so awful. But now consider what this implies for the broader ecosystem — which doesn’t 

just consist of huge corporations like Apple or Google, but individual coders, small startups, and 

the open source communities that collaboratively produce software like Firefox. In principle, a 

lone computer science student, or a small team contributing to an open source project, can today 

write their own Web browser (or any other app implementing TLS) using open code libraries 

like OpenSSL, and release it online. We owe much of the spectacular innovation we’ve seen 

over the past few decades to the fact that software can be produced this way: You don’t even 

need a revenue model or a business plan or a corporate charter, just the knowledge to write code 

and the motivation to put it to use. Maybe the software makes you rich and launches the next 

Silicon Valley behemoth, or maybe the authors release it and forget about it, or move on and 

pass the torch to another generation of open source contributors. 

If Feinstein-Burr becomes law, say goodbye to all that — at least when it comes to software that 

supports encryption of files or communications. Those existing open-code libraries don’t support 

government backdoors, so the developer will have to customize the code to support their chosen 

government access mechanism (with the attendant risk of introducing vulnerabilities in the 

process) and then be prepared to secure the master key material for the effective life of the 

software—that or run a server farm to act as a key repository and secure that. As a practical 

matter, the (lawful) production of secure software in the United States becomes the exclusive 

domain of corporate entities large and rich enough to support (and at least attempt to secure) 

some kind of key-escrow and law enforcement compliance infrastructure. 

The probable upshot of this proposal, then, isn’t just that we all become less secure as big 

companies choose from a menu of terrible options that will enable them to comply with 

decryption orders — though it’s important to keep pointing that out, since legislators seem 

somehow convinced the experts are all lying about this. It’s that smaller developers and open 

source projects look at the legal compliance burdens associated with incorporating encryption in 

their software and decide it isn’t worth the trouble. Implementing crypto correctly is already hard 

enough; add the burden of designing and maintaining a Feinstein-Burr compliance strategy and a 

lot of smaller developers and open source projects are going to conclude it’s not worth the 

trouble. 

In an environment of dire and growing cybersecurity threats, in other words, legislators seem 

determined to dissuade software developers from adopting better security practices. That would 

be a catastrophically bad idea, and urging developers to “nerd harder” doesn’t make it any less 

irresponsible. 

Julian Sanchez is a senior fellow at the Cato Institute and contributing editor for Reason 

magazine. Follow him on Twitter 

 

https://www.openssl.org/

